Responding to the threat of road salt in Muskoka

Norman Yan and Robin Valleau with Arran Brown (York U and FMW) Martha Celis-Salgado, Shelley Arnott, John Smol (Queens U) Ryan Sorichetti, Andrew Paterson, Jim Rusak (MECP) and Tim Kearney (FMW and CNLA)

redefine THE POSSIBLE.

Objectives

- 1. to demonstrate that:
 - Cl levels in Ontario lakes are rising because of road salt
 - The CWQG for CI might not provide appropriate protection for Muskoka lakes
 - To suggest a guideline that might provide such protection
 - To seek evidence of ecological damage in Muskoka lakes linked to Cl toxicity (Robin's research)
- 2. To indicate how we might follow logical steps in an environmental management process to solve this problem

Setting the stage:

What scientific knowledge is needed to protect our lakes?

• <u>Assessment</u>

- <u>Description</u> of what we value and want to protect
- <u>Detection</u> of a problem or threat, by comparing indicators with targets
- <u>Remediation/Prevention</u>
 - <u>Diagnosis</u> of the cause of the problem or threat
 - <u>Modelling</u> of linkage of cause with effect
 - <u>Prognosis</u> of alternative plans of action
 - <u>Re-assessment</u> of indicators after the remedial interventions are in force

1: Decade-long Environmental Trends in Muskoka

- Improving
 - Acid rain, lead pollution, DDT, phosphorus
- Uncertain
 - Mercury, pharmaceuticals, plastic pollution, nano-particles, development pressures
- Worsening
 - invading species, climate change, road salt, calcium decline

We add 5-7 million t/yr of salt to Canada's roads *

Provincial Water Quality Monitoring Network (PWQMN) from Sorichetti et al. (2018) MECP

Are such high levels of Cl widespread or only in the GTA?

- Lake Partner Program (LPP) in 2015; Broadscale Monitoring program (BsM) in 2008
- Cl in 690 lakes across Ontario from 2013-2016
- All LPP and BsM lakes in Ontario have Cl concentrations below Canadian Water Quality Guideline of 120 mg/L
- But remote lakes of the BsM program have much lower Cl levels

LPP (MECP Dorset); BsM (MNRF)

Are we responsible for high Cl levels in waters? In S ON stream Cl correlates with road density*

High population density leads to high road density

Median and **maximum** chloride concentrations positively and significantly correlated to road density

*Todd & Kaltenecker (2012) – Environ. Poll.

What about in Muskoka The Dorset Environmental Science Centre (DESC)

Have CI levels changed in the DESC's study lakes?

Do the DESC data reflect the range of Cl* in Muskoka?

*data from Rebecca from DMM Water Quality Monitoring Program

Jevins Lake in Gravenhurst

What is the Canadian Water Quality Guideline for chronic exposure to Chloride? Species Sensitivity Distribution (SSD) from 28 studies on Cl toxicity

Does the chronic CWQG for Cl protect Muskoka lakes?

• Pluses

- It's published
- It was set in Canada, by Environment Canada
- It uses a well-established procedure, the 5th percentile of a fit to the SSD
- It is based on toxicity results for 28 freshwater species, including both plants and animals, vertebrates and invertebrates
- The model used to interpolate the CWQG fits the data well
- Minuses
 - It is based entirely on lab studies under ideal rearing conditions for the species
 - It has not been tested in soft, nutrient-poor media that typify Muskoka lakes, but water hardness and food sufficiency may well influence sensitivity to Cl
 - Nor has it been tested in the field
- Might the guideline be based on excellent work under the wrong conditions for Muskoka?

Arran Brown's MSc research*

- 14 day chronic Cl toxicity assays using an Ontario clone of *Daphnia* in a chemically defined <u>soft-water</u> medium
- Run with CaCl₂ and NaCl
- Used food quantity that ranged from oligotrophic to eutrophic conditions, the former typical of Muskoka lakes, the latter typical of regulatory toxicology assays

Influence of food quantity on chloride toxicity to one *Daphnia* in soft-water*

And what are the food levels in Muskoka lakes?

And Brown and Yan

- used only one daphniid line
- A hybrid of *Daphnia pulex* and *pulicaria*
- Which was isolated from a Sudbury lake exposed to a century of smelter pollutants
- Might other lines or species isolated from uncontaminated, soft-water lakes in Muskoka differ in sensitivity to road salt?

21 day LC₅₀ for Cl in soft-water at high food* for 9 Dorset vs. the Sudbury line of *D. pulicaria*

*Martha Celis-Salgado and Shelley Arnott (in prep)

And *Daphnia pulicaria* is a relatively tolerant daphniid 21 day LC₅₀ in soft-water at high food*

* Arnott, Celis-Salgado, Smol, Paterson, Rusak, Brown, Yan in prep

Might Cl levels be toxic in Muskoka lakes?

But this is all work in the lab.

Is there any proof of actual ecological damage in Muskoka lakes from road salt?

Using paleolimnology to assess the effects of road salt on lakes within the Muskoka River Watershed

Robin Valleau

Queen's University

Department of Biology

PEARL Paleoecological Environmental Assessment and Research Laboratory

Muskoka

- Development in the Muskoka area began in 1868
- HWY 11 built in the 1920s
 - Upgraded and opened to public in 1927
- Salt application began 1950
- HWY 11 upgrade late 1960 and early 1970

Picture: Newly-completed Hwy 11 Diversion between Gravenhurst and Bracebridge showing new zone markings, 1/2 mile north of Airport Road. Photograph taken on September 8, 1950.

<u>Objectives</u>

- I. Assess whether biological changes have occurred in the MRW with known road salt additions
- II. Assess variability in cladoceran and Zooplankton community structure across gradients of salt and food availability
- III. Determine salt tolerances of littoral Cladocera taxa using bioassays

Objectives

- I. Assess whether biological changes have occurred in the MRW with known road salt additions
- II. Assess variability in cladoceran and Zooplankton community structure across gradients of salt and food availability
- III. Determine salt tolerances of littoral Cladocera taxa using bioassays

The Muskoka River Watershed

Ada Lake (33 mg/L)

Penfold Lake (45 mg/L)

Wolfkin Lake (38 mg/L)

Jevins Lake (91 mg/L)

Heney Lake * (1 mg/L)

Tooke Lake (46 mg/L)

Chloride Concentration

Low

Lake

- Ada Lake
- Jevins Lake
- Penfold Lake
- + Tooke Lake
- Wolfkin Lake

Is it Road Salt?

Heney Lake

- Muskoka, Ontario
- Monitored long term by the District of Muskoka and the MOECC
- Similar physical and chemical characteristic
 - Size, depth,

Calcium, TP

	Heney	Jevins
Area (km ²⁾		
	0.22	0.36
Depth (m)		
	5.8	3
Chloride (mg/L)		
	0.94	90.9

PCA axis 1 Scores

<u>Objectives</u>

- I. Assess whether biological changes have occurred in the MRW with known road salt additions
- II. Assess variability in cladoceran and Zooplankton community structure across gradients of salt and food availability
- III. Determine salt tolerances of littoral Cladocera taxa using bioassays

Background

- Multiple stressors
 - Food availability, acidification and recovery and climate
- The toxicity of a chemical to aquatic organisms is negatively influenced by food quantity
 - Most MRW lakes have particulate food concentrations between 0.1 -0.5 mg C/L

Field Survey

<u>Objectives</u>

- I. Assess whether biological changes have occurred in the MRW with known road salt additions
- II. Assess variability in cladoceran and Zooplankton community structure across gradients of salt and food availability
- III. Determine salt tolerances of littoral Cladocera taxa using bioassays

Background

- Test animals will be dominant shallow water species
- Used to corroborate findings from the paleolimnological and field studies

Conclusions

- Road salt does not stay put. It migrates into our waters
- At GTA river mouths, Cl is now often above the chronic CWQG of 120 mg/L
- In Muskoka, Cl levels in undeveloped lakes have fallen by ~40%
- Levels are not above 120 mg/L in Muskoka, but
- this guideline will not protect typical Muskoka lakes
- We propose a Muskoka-relevant guideline of ~10 mg/L
- Many lakes are approaching or already exceed this level
- Most highly impacted lakes show changes in zooplankton assemblages that coincide with known road salt application

Solving the road salt problem with a local for management plan

Objectives of the Muskoka Salt Working Committee

- Implement the **smart salt** program in Muskoka
- Understand how much we need to reduce salt levels by
 - Assembling all salt data from Muskoka waters
 - Establishing trends in these data
 - Designing an optimal Cl monitoring program
 - Quantifying salt loads to the environment from all sources
 - Reviewing Cl toxicity data to develop a Muskoka-based Cl guideline
- Evaluate alternative actions based on best practices outlined in the Lake Simcoe Region Conservation Authority salt reduction strategy, the Smart about Salt Program, and latest developments in non-additive de-icing technologies