

"...the water foul, frequently with a green scum of vegetable matter..."

- Major Joseph Delafield, LOW, 1823

Algal blooms:

- 1) Reduced water clarity
- 2) Loss of deep-water oxygen
- 3) Toxins
- 4) Taste and odour

Property values are a function of amount of frontage, location, structural components and WATER QUALITY

(Bracebridge Examiner, October 19th, 2005)

Aphanizomenon -

Why is this happening?

What caused this?

Will it happen again?

Fly ash and charcoal

From the air and land

Contaminants

From the lake

Algae

"The islands were numerous and crowded..."

- Major Joseph Delafield, 1823

- large surface area (~ 385,000 ha)
- over 14,500 islands
- flow is north
- ~75% of tributary inflow and 75% of the TP load comes from the Rainy River (Hargan et al., submitted)

Management issues

Severe blue-green blooms/toxic

Development pressure

Fisheries management

Invasive species

Hydrological management / Shoreline erosion

Climate change

(Photo: Bev Clark)

A disconnect in Lake of the Woods?

Perception that cyanobacterial blooms have increased in intensity and duration in recent years

A decline in phosphorus loading from the Rainy River

A region sensitive to recent warming

Sampling sites

- Reference site (no blue-greens)
- Impacted site (lots of blue-greens)

(Photo: K. Rühland)

→ Sediment chlorophyll *a* concentrations inform about past changes in the amount of algae

Chlorophyll a occurs in all photosynthetic eukaryotes and the cyanobacteria

Chlorophyll-a (ppb) related to Lake Trophic State

Inferred ChI a versus mean annual air temperature

Impact site vs mean annual air T°

$$r = 0.81, p < 0.001, n = 36$$

Reference site vs mean annual air T°

$$r = 0.07$$
, $p = 0.66$, $n = 43$

Diatoms: sensitive indicators of climate warming

- single-celled, microscopic algae
- well preserved in lake sediments
- taxonomically specific ornamentation
- sensitive to environmental and climatic change
- respond rapidly to environmental change

Diatoms and warming: Cyclotella - Aulacoseira

Warming favours small diatoms

Longer ice-cover period Mixed water column

Stratified and/or less ice

Whitefish Bay, Lake of the Woods, Ontario

A disconnect in Lake of the Woods?

Perception that cyanobacterial blooms have increased in intensity and duration in recent years

Possible mechanisms:

- increased duration and strength of thermal stratification favouring buoyant algae, including bluegreens (PHYSICAL CHANGE)
- warmer temperatures and longer ice-free season that affects nutrients in favour of blue-greens (CHEMICAL CHANGE)

Hudson Bay Lowlands, Ontario

Distribution of permafrost and ground ice in N. America

The Hudson Bay Lowlands:

- most southerly extend of continuous permafrost in Canada
- steep (geographically-narrow) permafrost gradient
- ground ice content is moderate (10-20% relative volume)

Arctic Temperature Trends 1966-1995

"...Hudson Bay area has recently undergone a climate regime shift, in the mid 1990s..."

Hochheim & Barber (2010) J. Geophys. Res.

On-the-ground observations

Recent evidence of:

- lower water levels
- increased prominence of aquatic vegetation
- expansion of populations of warm-tolerant fish species, such as pike

Recent diatom trends: North Raft Lake

Cyclotella stelligera and Annual Temperature

Year A.D.

Recent diatom trends: Spruce Lake

Climate trends in Muskoka

- Six climate stations within the Muskoka River Watershed
- 1984-2007: Harp, Plastic & Heney
- 1973-2005: Dwight
- 1938-2006: Muskoka A
- 1876-2006: Beatrice

Climate trends in Muskoka

ANNUAL TRENDS

(Source: Jason Kerr)

Fall warming in Muskoka

(Bracebridge Examiner, October 19th, 2005)

2005 was the warmest/driest fall on record

Monthly runoff – Outflow (modeled)

Monthly runoff – Outflow (modeled)

If algae are the music we hear from a radio...

Phosphorus controls the "volume" of algae

Chlorophyll-a interval frequency versus total phosphorus.

Other nutrients (esp. nitrogen), light, etc., influence what species are present – the "tuning"

Phosphorus controls the "volume" of algae

Climate is the aerial Kaito xxxxx

Other nutrients (esp. nitrogen), light, etc., influence what species are present – the "tuning"

Phosphorus controls the "volume" of algae

Blue-greens like it hot!

